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Figure 1. SparseFlex VAE achieves high-fidelity reconstruction and generalization from point clouds. Benefiting from a sparse-
structured differentiable isosurface surface representation and an efficient frustum-aware sectional voxel training strategy, our SparseFlex
VAE demonstrates the state-of-the-art performance on complex geometries (left), open surfaces (top right), and even interior structures
(bottom right), facilitating the high-quality image-to-3D generation with arbitrary topology.

Abstract

Creating high-fidelity 3D meshes with arbitrary topology,
including open surfaces and complex interiors, remains a
significant challenge. Existing implicit field methods often
require costly and detail-degrading watertight conversion,
while other approaches struggle with high resolutions. This
paper introduces SparseFlex, a novel sparse-structured iso-
surface representation that enables differentiable mesh re-
construction at resolutions up to 10243 directly from ren-
dering losses. SparseFlex combines the accuracy of Flexi-
cubes with a sparse voxel structure, focusing computation
on surface-adjacent regions and efficiently handling open
surfaces. Crucially, we introduce a frustum-aware sectional
voxel training strategy that activates only relevant voxels dur-
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ing rendering, dramatically reducing memory consumption
and enabling high-resolution training. This also allows, for
the first time, the reconstruction of mesh interiors using only
rendering supervision. Building upon this, we demonstrate
a complete shape modeling pipeline by training a varia-
tional autoencoder (VAE) and a rectified flow transformer
for high-quality 3D shape generation. Our experiments show
state-of-the-art reconstruction accuracy, with a ∼82% reduc-
tion in Chamfer Distance and a ∼88% increase in F-score
compared to previous methods, and demonstrate the gener-
ation of high-resolution, detailed 3D shapes with arbitrary
topology. By enabling high-resolution, differentiable mesh
reconstruction and generation with rendering losses, Sparse-
Flex significantly advances the state-of-the-art in 3D shape
representation and modeling. Please see our project page at
https://xianglonghe.github.io/TripoSF.
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1. Introduction
3D Generative AI is rapidly advancing, with applications
spanning entertainment, design, and robotics. However, gen-
erating 3D content is fundamentally more challenging than
2D image or text generation due to the inherent complexity
of representing and manipulating 3D geometry. Achieving
high fidelity and supporting arbitrary topology—including
open surfaces and complex interiors—presents particularly
significant hurdles.

Recent progress in 3D generative models has explored var-
ious representations, including point clouds [45, 46, 52, 68],
meshes [51, 63], 3DGS [18, 32, 78, 88], and implicit
fields [9, 10, 34, 35, 59, 77, 78, 87, 91, 93, 95]. Implicit
field representations, such as Signed Distance Functions
(SDFs) and occupancy fields, have shown favorable re-
sults [31, 77, 78, 85, 87, 95]. However, creating training
data for these methods typically involves a two-step process
that limits their effectiveness. First, raw 3D mesh data must
be converted into watertight representations [79, 91] to calcu-
late SDF or occupancy values—a computationally expensive
preprocessing step that often degrades fine details. Second,
isosurfacing techniques (e.g., Marching Cubes [43], Dual
Contouring [26]) are used to extract meshes from the learned
continuous field, which can introduce further inaccuracies
and artifacts. While Unsigned Distance Fields (UDFs) offer a
potential way to model open surfaces [6, 11, 16, 38, 42, 84],
they often suffer from instability and struggle to capture
geometric fine details.

Rendering-based supervision offers a powerful, differ-
entiable alternative for training 3D representations and 3D
generative models [60, 61, 73, 74, 78, 80]. By directly com-
paring rendered images of a generated mesh to ground-truth
data, rendering losses avoid the need for the initial watertight
preprocessing step and better preserve fine details. However,
a critical bottleneck arises: when used with dense implicit
fields, rendering supervision requires extremely high mem-
ory consumption at high resolutions, severely limiting the
achievable fidelity.

This paper introduces SparseFlex, a new sparse-
structured isosurface representation that addresses these lim-
itations and unlocks high-resolution, differentiable mesh
reconstruction and generation using rendering supervisions.
SparseFlex is built upon Flexicubes [61], providing accurate
and differentiable isosurface extraction. The key design is
the use of a sparse voxel structure instead of a conventional
dense grid. This sparsity is crucial for two primary reasons:
(1) it dramatically reduces memory consumption, enabling
high-resolution modeling, and (2) it allows for the effec-
tive pruning of voxels near open boundaries, enabling the
representation of open surfaces.

To fully leverage the capabilities of SparseFlex, we pro-
pose frustum-aware sectional voxel training. Inspired by
techniques used in real-time rendering [1], this approach acti-

vates only the subset of SparseFlex voxels that reside within
the camera’s viewing frustum during each training iteration.
We also introduce an adaptive strategy to control the frus-
tum’s parameters, further optimizing memory usage. This
not only substantially reduces computational and memory
overhead but also enables, for the first time, the reconstruc-
tion of mesh interiors using only rendering supervision by
appropriately positioning the camera. Fig. 3 illustrates our
SparseFlex representation and the efficient sectional voxel
training strategy.

Building on SparseFlex and our frustum-aware training,
we present a complete 3D shape modeling pipeline. We em-
ploy a variational autoencoder (VAE) architecture, drawing
inspiration from TRELLIS [78] but with key modifications.
Firstly, because our focus is on high-fidelity geometry, we
use point clouds as input to the VAE, providing a direct and
detailed representation of the shape’s surface. Furthermore,
we introduce a self-pruning upsampling module within the
decoder to further refine the sparse voxel structure, which
is particularly beneficial for representing open surfaces. A
rectified flow transformer is then trained on the learned la-
tent space for high-quality, image-conditioned 3D shape
generation. Through extensive experiments on Toy4k [64],
ABO [12], GSO [15], Meta [48], Objaverse [14], and Deep-
fashion3D [19], our method demonstrates state-of-the-art
shape reconstruction accuracy with minimal detail degrada-
tion, and high-quality single-image 3D shape generation.

Our main contributions are:

• We propose SparseFlex, a new sparse-structured isosur-
face representation enabling efficient, high-resolution, and
differentiable 3D shape modeling, with natural handling
of open surfaces.

• We introduce a novel sectional voxel training strategy
with adaptive view frustum control, dramatically reducing
memory consumption and enabling high-resolution mesh
reconstruction and generation, including interiors, using
rendering losses.

• We demonstrate state-of-the-art reconstruction accuracy
and the generation of high-resolution, detailed 3D shapes
with arbitrary topology, representing a significant advance
in the field.

2. Related Work

2.1. 3D Shape Representations for Generation
Point Cloud. Point clouds are a flexible 3D representation
and can be easily acquired using depth sensors and LiDAR.
Research has focused on point cloud processing [57, 58, 92]
and generation [45, 46, 52, 68], with recent approaches treat-
ing point clouds as a distribution, directly sampling point
clouds from noise via generative models [4, 89]. However,
due to their limitation in representing solid surfaces, an addi-
tional surface reconstruction step [22, 27, 56] is required.
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Figure 2. Overview of the SparseFlex VAE pipeline. SparseFlex VAE takes point clouds sampled from a mesh as input, voxelizes them,
and aggregates their features into each voxel. A sparse transformer encoder-decoder compresses the structured feature into a more compact
latent space, followed by a self-pruning upsampling for higher resolution. Finally, the structured features are decoded to SparseFlex through
a linear layer. Using the frustum-aware section voxel training strategy, we can train the entire pipeline more efficiently by rendering loss.

Triangle Mesh. Triangle meshes are the primary represen-
tation for 3D assets in modern industrial pipelines. Recent
works employ auto-regressive models to generate triangle
faces sequentially [51, 63, 66], improving resemblance to
artist-created meshes. While effective for low-poly meshes,
these methods struggle to produce high-quality meshes with
a high face count.

Implicit Field. Implicit fields (SDF or occupancy) are
widely used in geometry learning, particularly for 3D re-
construction [16, 22, 55, 61, 72, 96] and generation [9,
10, 34, 35, 59, 77, 78, 87, 91, 93, 95], producing high-
quality meshes. Enhancements with triplane [77], vector
set [85, 87, 93] sparse voxels [78] and sparse hierarchical
voxels [59] allow neural networks to decode the field more
effectively. These methods typically use the isosurface tech-
niques [26, 43, 53] for surface extraction but struggle with
open-surface shapes like clothing and flowers. Additionally,
many require a time-consuming watertight conversion that
degrades details, while rendering supervised approaches [78]
suffer from high memory consumption when training at high
resolutions.

Open Surfaces. Meshes with open surfaces are common
but remain challenging to process. The Unsigned Distance
Field (UDF) is widely used for open-surface modeling from
point clouds [8, 11, 70, 83] or multiview images [38, 42, 47].
Surf-D [84] introduces a UDF-based diffusion model for
generating meshes with arbitrary topology. However, UDF-
based shape modeling is more difficult than SDF, and its sur-
face extraction [17] is prone to instability due to inaccuracy
in neural network gradient estimations. As a result, achiev-
ing high-quality open-surface meshes remains challenging.
3PSDF [6] introduces a three-pole sign to distinguish surface-
adjacent regions but relies on binary occupancy grids for
surface extraction, leading to discontinuities and artifacts

on the surface. Although G-Shell [40] proposes a new 3D
representation for extracting non-watertight meshes from
watertight triangular meshes and trains a diffusion model
based on this representation, its dense grid structure limits
it to high resolution when handling complex shapes. In this
paper, we incorporate sparse structure into Flexicubes [61]
to efficient high-quality isosurface representation for open
faces.

2.2. 3D Generative Models and VAE

Existing 3D generation studies are primarily classified
into two categories: large 3D reconstruction model follow-
ing 2D multiview diffusion models and native 3D gener-
ation models. The first category uses multiview diffusion
models to generate multiview images from text or an im-
age [23, 24, 37, 41, 62, 71], followed by a large 3D recon-
struction model [21, 33, 65, 67, 80, 81, 90, 97] is employed
to reconstruct the 3D representation from these images in
seconds. However, inconsistencies between generated mul-
tiview images significantly often degrade the result quality.
The second category focuses on native 3D generation model
that directly generate 3D models through generative mod-
els, including GAN [3, 7, 76, 94], auto-regressive [50, 86],
diffusion [25, 68, 87, 91] and rectified flow [35, 78].

Due to the diverse and non-compact nature of 3D repre-
sentation, many approaches use Variational Auto-Encoder
(VAE) [29] or Vector Quantized VAE (VQ-VAE) [69] to en-
code 3D shapes into latent spaces for the generative models.
Geometry-focused methods often input point clouds uni-
formly sampled from mesh surfaces into the VAE [5, 87].
When aim at decoding both geometry and texture, some
methods [31, 32, 78] encode multiview image features into
latent spaces. This two-stage process makes the VAE’s re-
construction quality crucial for subsequent generation per-
formance. Some works [5, 85] have improved generation
quality by enhancing the VAE’s shape encoding-decoding
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Figure 3. Frustum-aware sectional voxel training. The previous
mesh-based rendering training strategy (left) requires activating the
entire dense grid to extract the mesh surface, even though only a few
voxels are necessary during rendering. In contrast, our approach
(right) adaptively activates the relevant voxels and enables the
reconstruction of mesh interiors only using rendering supervision.

capabilities. In this paper, we aim to develop a foundational
VAE that encodes 3D shapes into latent spaces and recon-
structs them with arbitrary topology while preserving the
raw 3D shape’s details.

3. Method
We present a method for high-resolution 3D shape modeling
based on a novel sparse-structured isosurface representation,
SparseFlex. Our approach leverages differentiable rendering
for training, enabling accurate reconstruction of complex
geometries, including open surfaces and interiors (see Fig. 1.
Fig. 2 illustrates our variational autoencoder (VAE) based
shape modeling pipeline, which utilizes the SparseFlex rep-
resentation to learn a compact latent space of 3D shapes.
The VAE decoder outputs the parameters of a SparseFlex
instance, facilitating high-resolution mesh reconstruction. A
key component of our approach is frustum-aware sectional
voxel training, which significantly reduces memory con-
sumption, allowing for training at resolutions up to 10243.
Details of the SparseFlex representation are provided in
Sec. 3.1, followed by a description of the VAE architecture
in Sec. 3.2 and the training procedure in Sec. 3.3. Sec. 3.4
describes image-conditioned 3D shape generation using a
rectified flow transformer on the learned latent space.

3.1. SparseFlex Representation
Preliminary. To achieve differentiable mesh extraction
while preserving sharp features, we build upon Flexi-
cubes [61], a method based on Dual Marching Cubes [53]
(DMC). DMC places vertices at the center of voxels rather
than edges/corners, leading to better feature preservation.
Flexicubes constructs a dense voxel with a resolution of N3

r ,
where an SDF scalar grid s ∈ RN3

g is assigned to the voxel
corner points, where Ng = Nr + 1. For each voxel, it inco-

porates interpolation weights α ∈ RN3
r×8

>0 , β ∈ RN3
r×12

>0 to
each voxel cell, and deformation vectors δ ∈ RN3

g to each
SDF grid. The underlying surface mesh can be effectively
optimized via differentiable rendering [30].

Sparse Structured Flexicubes. The core design of Sparse-
Flex is the introduction of a sparse voxel structure, enabling
high-resolution shape representation while drastically reduc-
ing memory consumption. Instead of a dense grid, Sparse-
Flex represents a shape using a significantly smaller set of
voxels, V , concentrated near the surface. This sparsity is cru-
cial for two reasons: (1) it allows us to achieve much higher
resolutions than would be possible with a dense grid, and
(2) it enables the natural representation of open surfaces by
simply omitting voxels in empty regions.

Specifically, the SparseFlex is defined by a set of Nv

voxels, V = {vi = (xi, yi, zi)}, where vi represents the
3D coordinates of the center of the i-th voxel. Let Nc be
the number of corner grids associated with these voxels,
where Nv = |V|. Each voxel is associated with interpolation
weights {αi ∈ R8

>0, βi ∈ R12
>0|0 ≤ i < Nv}. Each corner

grid is associated with an SDF value {sj |0 ≤ j < Nc} and
deformation vectors {δj |0 ≤ j < Nc}. Due to the sparsity,
Nv ≪ N3

r and Nc ≪ N3
g , representing a significant re-

duction in memory usage compared to the dense Flexicubes
representation. We only apply Dual Marching Cubes on these
sparse voxels to extract the underlying surface. Formally, the
SparseFlex representation, S, is defined as:

S = (V,Fc,Fv), Fc = {sj , δj}, Fv = {αi, βi}, (1)

where V represents the voxel centers, Fc contains the SDF
values and deformations at the corner grids, and Fv contains
the interpolation weights for each voxel.

SparseFlex inherits the differentiability of Flexicubes,
allowing for end-to-end optimization using rendering losses.
This eliminates the need for watertight mesh pre-processing,
preserving fine details. Furthermore, the sparse structure,
combined with the continuous and deformable nature of the
SDF, allows for accurate and efficient representation of high-
quality open-surface meshes. The sparsity also paves the way
for our efficient frustum-aware training strategy, described
in Sec. 3.3.

3.2. SparseFlex VAE for Shape Modeling
To learn a compact and disentangled latent space of 3D
shapes, we employ a variational autoencoder (VAE) [29] that
utilizes the SparseFlex representation. A VAE learns a prob-
abilistic mapping between an input space (in our case, 3D
shapes represented as point clouds) and a lower-dimensional
latent space, enabling both reconstruction and generation
of shapes. Fig. 2 also illustrates our VAE architecture. Our
architecture draws inspiration from TRELLIS [78], but with
key modifications to leverage the strengths of SparseFlex.

Encoder. The input to our encoder is a point cloud P =

{pi ∈ R3}Np

i=1, uniformly sampled from the surface of a
3D mesh, along with corresponding normals N = {ni ∈
R3}Np

i=1. We first voxelize the point cloud to obtain the sparse
structure V of the SparseFlex representation S. We then
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employ a shallow PointNet [57] to aggregate local geomet-
ric features within each voxel. Specifically, for each voxel
vi ∈ V , we apply a local max-pooling operation [55] to the
points contained within that voxel, producing a feature vec-
tor fi. These voxel features F = {fi}, along with the sparse
structure V , are then fed into a sparse transformer backbone.
This backbone utilizes shifted window attention [39, 82],
similar to TRELLIS [78], but is adapted to operate directly
on the sparse voxel features F and structure V . The trans-
former outputs a latent code z ∈ Rdz , which represents the
encoded 3D shape.

Decoder. The decoder takes the latent code z as input
and predicts the parameters of a SparseFlex instance, S =
(V,Fc,Fv). We use a series of transformer layers, culmi-
nating in a final linear layer, to predict the SDF values (sj)
and deformations (δj) for each corner grid, as well as the
interpolation weights (αi, βi) for each voxel.

Upsampling Modules. To achieve high-resolution recon-
structions, we incorporate two convolutional, self-pruning
upsampling modules within the decoder, following the trans-
former. These modules progressively increase the resolution
of the SparseFlex representation. Each upsampling module
subdivides existing voxels into smaller voxels (increasing
the resolution by a factor of 4). Crucially, each module also
prunes redundant voxels based on a predicted occupancy
value. A voxel is considered occupied if, after the subdivi-
sion, it contains any points from the input point cloud P .
This pruning process, inspired by [59], is essential for main-
taining the sparsity of the SparseFlex representation and
is particularly beneficial for accurately representing open
surfaces, as it removes unnecessary voxels in empty regions.

3.3. Training SparseFlex VAE

We train our SparseFlex VAE end-to-end using rendering
losses, leveraging the differentiability of the SparseFlex rep-
resentation and a new training strategy called frustum-aware
sectional voxel training. This strategy dramatically reduces
memory consumption during training, enabling us to achieve
high resolutions (up to 10243) that would be infeasible with
traditional approaches.

Frustum-aware Sectional Voxel Training. Even with the
sparse structure of SparseFlex, directly rendering the entire
representation at high resolutions can be computationally
expensive. Furthermore, standard rendering supervision typi-
cally focuses only on the visible surface, neglecting the inte-
rior of the shape. Besides, recent methods [36, 73, 75, 78, 80]
relying on rendering supervision from mesh typically require
extracting the entire mesh because a dense representation
doesn’t trivially allow for partial extraction. In contrast, our
sparse representation naturally enables partial extraction. To
address these issues, we introduce frustum-aware sectional

voxel training. Inspired by techniques used in real-time ren-
dering for efficient visibility culling [1], this approach acti-
vates only the voxels within the camera’s viewing frustum
during each training iteration. “Activating” a voxel means in-
cluding it in the isosurface extraction and rendering process.
This “sectional” approach means we only process a portion
of the 3D space at a time, markedly reducing memory usage.

As illustrated in Fig. 3, given the camera’s extrinsic π, in-
trinsics K, and the near (n) and far (f ) clipping planes of the
viewing frustum, we compute the Model-View-Projection
(MVP) matrix MVP. We then use a boolean operator
to check whether the center of each voxel vi lies within
the viewing frustum defined by the MVP matrix. We use
I(vi ∈ Frustum(MVP)) to represent this check, where I(·)
is an indicator function. The set of active voxels, Vactive, is
then defined as:

Vactive = {vi|I(vi ∈ Frustum(MVP)) = 1, vi ∈ V}. (2)

Adaptive Frustum and Interior Reconstruction. We in-
troduce a visibility ratio α (0 < α ≤ 1) controlling the
proportion of active voxels in SparseFlex. We adaptively
adjust the near and far clipping planes to ensure that approx-
imately αNv voxels are within the frustum. This is achieved
through an iterative process: we initially set the near and far
planes and iteratively adjust them based on the number of
active voxels until the desired proportion is reached.

This adaptive frustum also enables a novel capability: re-
constructing mesh interiors using only rendering supervision.
By positioning a virtual camera inside the object or adjusting
the near clipping plane to intersect the mesh, we can render
and supervise the internal structure (see Fig. 4). Moreover,
the zoom-in camera viewpoint can render the mesh surface
with greater details, making it better for higher-resolution
training. This is a significant advantage over methods that
rely on watertight representations, which cannot capture in-
terior details.

Loss Function. We train our VAE in an end-to-end manner,
with an objective function comprising four components:

L = λ1Lrender + λ2Lprune + λ3LKL + λ4Lflex, (3)

where λ1, λ2, λ3, and λ4 are weighting coefficients that
balance the different loss terms.

Lrender is the rendering supervision loss. We employ a
combination of losses commonly used in differentiable ren-
dering [28, 49]:

Lrender = λdLd + λnLn + λmLm + λssLss + λlpLlp, (4)

where Ld, Ln, and Lm denote the L1 loss for depth maps,
normal maps, and mask maps, respectively. Lss and Llp

denote SSIM loss and LPIPS loss, and are only applied on
normal maps. Please refer to the supplementary material
for a detailed definition of these losses and their weighting
coefficients.
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Lprune is the structure loss, formulated as a binary cross-
entropy (BCE) loss, supervising the construction of sparse
voxels:

Lprune = BCE
(
V, V̂

)
, (5)

where V represents the ground-truth occupancy of voxels
derived from the input point cloud and V̂ represents the
predicted occupancy by the upsampling modules.

LKL is the KL divergence between the learned latent dis-
tribution and a standard normal prior, regularizing the latent
space. Lflex is the regularization term from Flexicubes [61]
to encourage smooth SDF values.

3.4. Image-to-3D Generation with Rectified Flow
Building upon the trained SparseFlex VAE, we develop a
pipeline for high-quality, image-conditioned 3D shape gen-
eration, following a similar approach to TRELLIS [61]. Our
approach consists of two main components: Structure Flow
Model and Structured Latent Flow Model.
Structure Flow Model. First, a separate, simple fully 3D
convolutional structure VAE is employed to compress dense
voxels representing 3D shapes into a low-resolution (1/4
scale) space. Subsequently, the image condition features are
extracted using DINOv2 [54] and injected into the trans-
former model via cross-attention, after which a rectified flow
model is trained within this low-resolution space. During
inference, given an input image, the trained structure flow
model generates the corresponding low-resolution 3D space,
which is then decoded by the structure VAE to produce the
sparse structure of the generated 3D shape.
Structured Latent Flow Model. Based on the proposed
SparseFlex VAE, the point cloud and the corresponding vox-
elized sparse structure of a 3D shape are encoded into a
structured latent space. Subsequently, the image condition
feature obtained via DINOv2 is injected into the sparse trans-
former model through cross-attention, followed by training
a rectified-flow model within this structured latent space.
During inference, given an input image, the corresponding
sparse structure is first generated using the structure flow
model and its structure VAE. Then, both the sparse structure
and the input image are provided to the structured latent flow
model to generate the corresponding structured latent repre-
sentation. Finally, the SparseFlex VAE decodes this latent
representation to produce the final 3D shape.

4. Experiments
4.1. Implementation Details
We develop the implementation of SparseFlex based on the
official code1 provided by FlexiCubes [61]. We train Sparse-
Flex VAE and structured latent flow model using approx-
imately 400K high-quality 3D meshes filtered from large-
scale datasets, Objaverse (-XL) [13, 14]. Since incorrect nor-
mals in raw data can significantly degrade the performance

Method Toys4k Dora Benchmark

CD ↓ F1(0.001) ↑ F1(0.01) ↑ CD ↓ F1(0.001) ↑ F1(0.01) ↑

Craftsman [34] 13.08/4.63 10.13/15.15 56.51/85.02 13.54/2.06 6.30/11.14 73.71/91.95
Dora [5] 11.15/2.13 17.29/26.55 81.54/93.84 16.61/1.08 13.65/25.78 78.73/96.40
Trellis [78] 12.90/11.89 4.05/4.93 59.65/64.05 17.42/9.83 3.81/6.20 62.70/71.95
XCube [59] 4.35/3.14 1.61/13.49 74.65/79.62 4.74/2.37 1.31/0.84 75.64/86.50
3PSDF∗ [6] 4.51/3.69 11.33/14.10 81.70/86.13 7.45/1.68 7.52/12.50 79.43/91.17

Ours256 2.56/1.25 18.31/27.23 85.35/92.01 1.93/0.53 16.24/28.37 88.76/97.31
Ours512 1.67/0.84 23.74/34.10 90.39/95.60 1.36/0.23 21.85/36.03 91.55/98.51
Ours1024 1.33/0.60 25.95/35.69 92.30/96.22 0.86/0.12 25.71/39.50 94.71/99.14

Table 1. Quantitative comparison for VAE reconstruction quality
on the Toys4K dataset (left) and Dora benchmark (right). The ‘/’
symbol separates the results computed over the entire dataset from
those obtained exclusively on the watertight subset.

Method CD ↓ F1(0.001) ↑ F1(0.01) ↑
Surf-D [84] 63.79 0.80 23.17
3PSDF∗ [6] 0.26 8.14 99.35

Ours†256 0.55 6.35 94.88
Ours256 0.08 18.60 99.99
Ours†512 0.18 11.31 99.93
Ours512 0.05 31.60 100.00
Ours†1024 0.05 24.80 100.00
Ours1024 0.04 37.22 100.00

Table 2. Reconstruction results on open-surface dataset Deep-
fashion3D. † indicates the absence of the self-pruning upsampling
module.

of both VAE reconstruction and image-to-3D generation,
we apply a mesh preprocessing step to correct these flipped
normals, ensuring that all normals are consistently oriented
outwards. Please refer to the supplementary for more details.

Building on the success of progressive training in recent
works [91], we train SparseFlex VAE progressively, increas-
ing final resolution from low to high (256, 512, and 1024).
For the structure VAE and structure flow model, we adopt
the model from Trellis [78] and finetune their pre-trained
weights to our task. We train SparseFlex VAE on 64 A100
GPUs with a batch size of 64 and train structured latent flow
models with a batch size of 256. We use the AdamW [44] op-
timizer with an initial learning rate of 1e− 4 and the weight
decay as 0.01. At inference, we generate the results with 3.5
CFG and 50 sampling steps.

4.2. Dataset, Baselines, and Metrics
Dataset. We evaluate the reconstruction quality of VAE
across different methods on a diverse set of datasets, includ-
ing 1) universal datasets ABO [12], GSO [15], Meta [48],
Objaverse [14], Toys4k [64] and 2) open-surface dataset
Deepfashion3D [19]). The test list of ABO, GSO, Meta, and
Objaverse is derived from Dora benchmark [5] after exclud-
ing our training data which includes about 2.7k assets. For
Toys4k, we use the full set following Trellis [78]. For the
image-to-3D generation, we evaluate the methods on 200
random assets from Toys4k [64] and some images in the
wild, showcasing the superior potential on generation tasks
of SparseFlex VAE.

Baselines. We compare our VAE with previous state-of-
the-art methods, including Craftsman [34], Trellis [78],

1https://github.com/nv-tlabs/FlexiCubes
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Figure 4. Qualitative comparison of VAE reconstruction between ours and other state-of-the-art baselines. Our approach demonstrate
superior performance in reconstructing complex shapes, open surfaces, and even interior structures.

Dora [5], XCubes [59], Surf-D [84] and 3PSDF [6], with
Surf-D and 3PSDF specially designed for open surfaces. We
directly use the available pre-trained weights provided by
these baselines, except for 3PSDF, which we re-implement
and train on our dataset. We only compare Surf-D on the
Deepfashion3D dataset due to the lack of available pre-
trained weights trained on large-scale datasets. For the gener-
ation results, we compare our method with InstantMesh [80],
Direct3D [77], and TRELLIS [78].

Metrics. We evaluate the reconstruction performance of
VAE by using the commonly used metrics, including Cham-
fer Distance (CD) and F-score with thresholds of 0.01
and 0.001. The metrics are multiplied by 104 and 102, re-
spectively. For generation results, four orthogonal views
of normal maps for each shape are rendered for quantita-

tive comparisons. We report the Fréchet Inception Distance
(FID) [20] and Kernel Inception Distance (KID) [2].

4.3. VAE Reconstruction Evaluation
We conduct extensive experiments to evaluate the quantita-
tive results of VAE reconstruction from different methods in
Table Tab. 1. Since Dora [5] and Craftsman [34] are trained
on watertight data, we separate the results exclusively on
the watertight subset from the results computed over the
entire dataset for the clear demonstration. These methods of-
ten perform poorly on non-watertight meshes, especially
open surfaces like flowers. Ours256 already outperforms
other baselines in terms of CD and F-score. As the reso-
lution increases, our method achieves even better, ultimately
achieving a ∼82% reduction on CD and ∼88% increase in
F-score. Fig. 4 demonstrate the superiority of our method
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GT TRELLIS-256 Ours-256 Ours-512 Ours-1024

Surface Error

Figure 5. Qualitative comparison of VAE reconstruction quality
between our method with different resolution and TRELLIS.

Feed-Forward Time (ms)↓ GPU Memory Cost (MB)↓
Resolution 2563 5123 10243 2563 5123 10243

Ours (α = 0.1) 333 620 1151 35515 40183 55441
Ours (α = 0.3) 357 697 1475 37403 45675 69991

w/o FSV 390 958 OOM 40703 62029 OOM
w/o FSV & Sp. 418 OOM OOM 45505 OOM OOM

Table 3. Feed-Forward time and GPU memory cost comparisons. α
stands for the visibility ratio of voxels. ‘OOM’ means Out Of Memory
and ‘FSV’ means frustum-aware sectional voxel training strategy. ‘Sp’
means SparseFlex.

Method InstantMesh [80] Direct3D [77] TRELLIS [78] Ours

FID↓ 68.74 50.84 47.66 44.95
KID (×103)↓ 9.68 2.04 1.28 1.05

Table 4. Quantitative generation results on Toys4k.

for complex shapes, open surfaces, and interior structures.
Tab. 2 compares our method with those designed for open
surfaces on the Deepfashion3D [19] dataset, and our method
still achieves the best performance among them.

4.4. Image to 3D Genration
We also validate the effectiveness of our SparseFlex VAE as
a foundation model for generation. Tab. 4 validates the ef-
fectiveness of our generation. Visualizations are also demon-
strated in Fig. 6, which includes image-to-3D results using
wild images. The generated shapes, which preserves sharp
edges and fine details, highly match the given images and
showcase the generalization of our method.

4.5. Ablation Studies
Self-Pruning Upsampling. Tab. 2 demonstrates that the
self-pruning upsampling module plays an important role
in the reconstruction quality of open-surface shapes, as it
allows for effective pruning of voxels near open boundaries,
enabling the reconstruction boundary to better align with
input. Supplementary shows the visual effects of this module
in detail.

SparseFlex and Frustum-aware Sectional Voxel Training.
To demonstrate the effectiveness of SparseFlex and frustum-

Figure 6. Single image-to-3D generations with in-the-wild im-
ages.1 The geometry of generated assets accurately preserves sharp
edges and fine details.

aware sectional voxel training strategy, we evaluate the run-
time of the feed-forward and GPU memory consumption
with different settings, as shown in Tab. 3. It demonstrates
that SparseFlex effectively reduces the required GPU mem-
ory and runtime during network feed-forward. However, it is
not efficient to scale to higher resolution. The frustum-aware
sectional voxel training strategy eliminates the reliance on
the entire surface extraction during rendering, significantly
reducing the memory requirements during training.

Sparse Voxel Resolutions. Higher resolution leads to bet-
ter VAE reconstruction quality as shown in Tab. 1. Fig. 5
illustrates the qualitative comparison of SparseFlex VAE
with different resolutions, along with TRELLIS with a reso-
lution of 256. Thanks to geometry encoding, our approach
achieves better geometry reconstruction with the same reso-
lution as TRELLIS. Benefiting from efficient training, more
details of complex structures are revealed, such as the tank
track in the first row, as the resolution increases.

1The original images in Fig. 6 are sourced from various 3D generation
platforms, benchmarks (such as Tripo3D, Rodin, Meshy, Trellis, etc.).
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5. Conclusion
In this paper, we present SparseFlex, a new sparse-structured
isosurface representation for differentiable mesh reconstruc-
tion with high resolution using rendering supervision, en-
abling the reconstruction of open surfaces. Based on Sparse-
Flex, we propose a novel frustum-aware sectional voxel
training strategy with adaptive frustum control to efficiently
train SparseFlex VAE with high-resolution, dramatically re-
ducing memory consumption. This strategy also allows our
method to reconstruction the interiors only using render-
ing loss. Finally, we develop the image-to-3D generation
pipeline following TELLIS [78]. Experiments demonstrate
state-of-the-art reconstruction accuracy and high-quality gen-
eration with open surfaces.
Limitations: Despite the strong performance of SparseFlex
VAE in both reconstruction and image-to-3D generation,
some limitations remain. 1) Open surface boundaries, while
handled effectively by voxel pruning, may exhibit minor
artifacts at lower resolutions. 2) High-resolution generation
remains computationally demanding. 3) Enhanced control
over the generation of interior structures is an area for future
work.
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